 Physics Equation List : Form 4
 Introduction to Physics

Relative Deviation

\[
\text{Relative Deviation} = \frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%
\]

Prefixes

<table>
<thead>
<tr>
<th>Prefixes</th>
<th>Value</th>
<th>Standard form</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tera</td>
<td>1 000 000 000 000</td>
<td>10^{12}</td>
<td>T</td>
</tr>
<tr>
<td>Giga</td>
<td>1 000 000 000</td>
<td>10^9</td>
<td>G</td>
</tr>
<tr>
<td>Mega</td>
<td>1 000 000</td>
<td>10^6</td>
<td>M</td>
</tr>
<tr>
<td>Kilo</td>
<td>1 000</td>
<td>10^3</td>
<td>k</td>
</tr>
<tr>
<td>deci</td>
<td>0.1</td>
<td>10^{-1}</td>
<td>d</td>
</tr>
<tr>
<td>centi</td>
<td>0.01</td>
<td>10^{-2}</td>
<td>c</td>
</tr>
<tr>
<td>milli</td>
<td>0.001</td>
<td>10^{-3}</td>
<td>m</td>
</tr>
<tr>
<td>micro</td>
<td>0.000 001</td>
<td>10^{-6}</td>
<td>μ</td>
</tr>
<tr>
<td>nano</td>
<td>0.000 000 001</td>
<td>10^{-9}</td>
<td>n</td>
</tr>
<tr>
<td>pico</td>
<td>0.000 000 000 001</td>
<td>10^{-12}</td>
<td>p</td>
</tr>
</tbody>
</table>

Units for Area and Volume

\[
\begin{align*}
1 \text{ m} & = 10^2 \text{ cm} \\
1 \text{ m}^2 & = 10^4 \text{ cm}^2 \\
1 \text{ m}^3 & = 10^6 \text{ cm}^3 \\
1 \text{ cm} & = 10^{-2} \text{ m} \\
1 \text{ cm}^2 & = 10^{-4} \text{ m}^2 \\
1 \text{ cm}^3 & = 10^{-6} \text{ m}^3
\end{align*}
\]

\[
\begin{align*}
\text{(100 cm)} & \quad \text{(10,000 cm)}^2 \quad \text{cm} \quad \text{m} \quad \text{m}^2 \quad \text{m}^3
\end{align*}
\]

http://www.one-school.net/notes.html
Force and Motion

Average Speed

Average Speed = \(\frac{\text{Total Distance}}{\text{Total Time}} \)

Velocity

\[v = \frac{s}{t} \]

- \(v \) = velocity \((\text{ms}^{-1}) \)
- \(s \) = displacement \((\text{m}) \)
- \(t \) = time \((\text{s}) \)

Acceleration

\[a = \frac{v - u}{t} \]

- \(a \) = acceleration \((\text{ms}^{-2}) \)
- \(v \) = final velocity \((\text{ms}^{-1}) \)
- \(u \) = initial velocity \((\text{ms}^{-1}) \)
- \(t \) = time for the velocity change \((\text{s}) \)

Equation of Linear Motion

- **Motion with constant velocity**
 \[v = \frac{s}{t} \]

- **Motion with constant acceleration**
 \[v = u + at \]
 \[s = \frac{1}{2} (u + v)t \]
 \[s = ut + \frac{1}{2} at^2 \]
 \[v^2 = u^2 + 2as \]

- **Motion with changing acceleration**
 Using Calculus (In Additional Mathematics Syllabus)

- \(u \) = initial velocity \((\text{ms}^{-1}) \)
- \(v \) = final velocity \((\text{ms}^{-1}) \)
- \(a \) = acceleration \((\text{ms}^{-2}) \)
- \(s \) = displacement \((\text{m}) \)
- \(t \) = time \((\text{s}) \)
Ticker Tape

Finding Velocity:

\[\text{velocity} = \frac{s}{\text{number of ticks} \times 0.02s} \]

1 tick = 0.02s

Finding Acceleration:

\[a = \frac{v - u}{t} \]

\[a = \text{acceleration} \quad (ms^{-2}) \]
\[v = \text{final velocity} \quad (ms^{-1}) \]
\[u = \text{initial velocity} \quad (ms^{-1}) \]
\[t = \text{time for the velocity change} \quad (s) \]

Graph of Motion

Gradient of a Graph

The gradient 'm' of a line segment between two points and is defined as follows:

Gradient, \(m = \frac{\Delta y}{\Delta x} \)

or

\[m = \frac{\Delta y}{\Delta x} \]
Displacement-Time Graph

Gradient = Velocity (ms\(^{-1}\))

Velocity-Time Graph

Gradient = Acceleration (ms\(^{-2}\))

Area in between the graph and x-axis = Displacement

Momentum

\[p = m \times v \]

- \(p \) = momentum (kg ms\(^{-1}\))
- \(m \) = mass (kg)
- \(v \) = velocity (ms\(^{-1}\))

Principle of Conservation of Momentum

\[m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 \]

- \(m_1 \) = mass of object 1 (kg)
- \(m_2 \) = mass of object 2 (kg)
- \(u_1 \) = initial velocity of object 1 (ms\(^{-1}\))
- \(u_2 \) = initial velocity of object 2 (ms\(^{-1}\))
- \(v_1 \) = final velocity of object 1 (ms\(^{-1}\))
- \(v_2 \) = final velocity of object 2 (ms\(^{-1}\))

Newton’s Law of Motion

Newton’s First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).
Newton’s Second Law

\[F = ma \]

\[\frac{mv - mu}{t} \]

The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.

- \(F \) = Net Force \((N \text{ or } kgm^2)\)
- \(m \) = mass \((kg)\)
- \(a \) = acceleration \((ms^{-2})\)

Implication
When there is resultant force acting on an object, the object will **accelerate** (moving faster, moving slower or change direction).

Newton’s Third Law

Newton’s third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

\[\text{Impulse} = Ft \]

\[mv - mu \]

- \(F \) = force \((N)\)
- \(t \) = time \((s)\)
- \(m \) = mass \((kg)\)
- \(v \) = final velocity \((ms^{-1})\)
- \(u \) = initial velocity \((ms^{-1})\)

Impulsive Force

\[F = \frac{mv - mu}{t} \]

- \(F \) = Force \((N \text{ or } kgm^2)\)
- \(t \) = time \((s)\)
- \(m \) = mass \((kg)\)
- \(v \) = final velocity \((ms^{-1})\)
- \(u \) = initial velocity \((ms^{-1})\)

Gravitational Field Strength

\[g = \frac{F}{m} \]

- \(g \) = gravitational field strength \((N \text{ kg}^{-1})\)
- \(F \) = gravitational force \((N \text{ or } kgm^2)\)
- \(m \) = mass \((kg)\)

Weight

\[W = mg \]

- \(W \) = Weight \((N \text{ or } kgm^2)\)
- \(m \) = mass \((kg)\)
- \(g \) = gravitational field strength/gravitational acceleration \((ms^{-2})\)
Vertical Motion

- If an object is released from a high position:
 - The initial velocity, \(u = 0 \).
 - The acceleration of the object = gravitational acceleration = \(10 \text{ms}^{-2} \) (or \(9.81 \text{ms}^{-2} \)).
 - The displacement of the object when it reaches the ground = the height of the original position, \(h \).

- If an object is launched vertically upward:
 - The velocity at the maximum height, \(v = 0 \).
 - The deceleration of the object = -gravitational acceleration = \(-10\text{ms}^{-2}\) (or \(-9.81\text{ms}^{-2}\)).
 - The displacement of the object when it reaches the ground = the height of the original position, \(h \).

Lift

In Stationary

- When a man standing inside an elevator, there are two forces acting on him.
 - (a) His weight, which acting downward.
 - (b) Normal reaction \((R)\), acting in the opposite direction of weight.

- The reading of the balance is equal to the normal reaction.

\[R = mg \]
<table>
<thead>
<tr>
<th>Moving Upward with positive acceleration</th>
<th>Moving downward with positive acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[R = mg + ma]</td>
<td>[R = mg - ma]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moving Upward with constant velocity</th>
<th>Moving downward with constant velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[R = mg]</td>
<td>[R = mg]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moving Upward with negative acceleration</th>
<th>Moving downward with negative acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[R = mg - ma]</td>
<td>[R = mg + ma]</td>
</tr>
</tbody>
</table>
Smooth Pulley

With 1 Load

<table>
<thead>
<tr>
<th>Moving with uniform speed:</th>
<th>Stationary:</th>
<th>Accelerating:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_1 = T_2$</td>
<td>$T_1 = mg$</td>
<td>$T_1 - mg = ma$</td>
</tr>
</tbody>
</table>

With 2 Loads

Finding Acceleration:
(If $m_2 > m_1$)

$m_2g - m_1g = (m_1 + m_2)a$

Finding Tension:
(If $m_2 > m_1$)

$T_1 = T_2$
$T_1 - m_1g = ma$
$m_2g - T_2 = ma$

Vector

Vector Addition (Perpendicular Vector)

Magnitude = $\sqrt{x^2 + y^2}$

Direction = $\tan^{-1}\left|\frac{y}{x}\right|$

Vector Resolution

$|x| = p |\sin \theta|$

$|y| = p |\cos \theta|$
Inclined Plane

Component parallel to the plane \(= mgsin\theta \)
Component perpendicular to the plane \(= mgcos\theta \)

Forces In Equilibrium

\[T_3 = mg \]
\[T_2 \sin \theta = mg \]
\[T_2 \cos \theta = T_1 \]
\[T_1 \tan \theta = mg \]
\[T_3 = mg \]
\[T_2 \cos \theta = T_1 \cos \alpha \]
\[T_2 \sin \theta + T_1 \sin \alpha = mg \]

Work Done

\[W = Fx \cos \theta \]
\(W = \) Work Done \((J\ or\ Nm)\)
\(F = \) Force \((N\ or\ kgm^{-2})\)
\(x = \) displacement \((m)\)
\(\theta = \) angle between the force and the direction of motion \((^\circ)\)

When the force and motion are in the same direction.

\[W = Fs \]
\(W = \) Work Done \((J\ or\ Nm)\)
\(F = \) Force \((N\ or\ kgm^{-2})\)
\(s = \) displacement \((m)\)
Energy

Kinetic Energy

\[E_K = \frac{1}{2}mv^2 \]

- \(E_K \) = Kinetic Energy \((J)\)
- \(m \) = mass \((kg)\)
- \(v \) = velocity \((ms^{-1})\)

Gravitational Potential Energy

\[E_P = mgh \]

- \(E_P \) = Potential Energy \((J)\)
- \(m \) = mass \((kg)\)
- \(g \) = gravitational acceleration \((ms^{-2})\)
- \(h \) = height \((m)\)

Elastic Potential Energy

\[E_P = \frac{1}{2}kx^2 \]

- \(E_P \) = Potential Energy \((J)\)
- \(k \) = spring constant \((N m^{-1})\)
- \(x \) = extension of spring \((m)\)

\[E_P = \frac{1}{2}Fx \]

- \(F \) = Force \((N)\)

Power and Efficiency

Power

\[P = \frac{W}{t} \]

- \(P \) = power \((W or Js^{-1})\)
- \(W \) = work done \((J or Nm)\)
- \(E \) = energy change \((J or Nm)\)
- \(t \) = time \((s)\)

Efficiency

\[\text{Efficiency} = \frac{\text{Useful Energy}}{\text{Energy}} \times 100\% \]

Or

\[\text{Efficiency} = \frac{\text{Power Output}}{\text{Power Input}} \times 100\% \]

Hooke’s Law

\[F = kx \]

- \(F \) = Force \((N or kgms^{-2})\)
- \(k \) = spring constant \((N m^{-1})\)
- \(x \) = extension or compression of spring \((m)\)
Force and Pressure

Density

\[\rho = \frac{m}{V} \]

\(\rho \) = density \hspace{2cm} (kg m\(^{-3}\))
\(m \) = mass \hspace{2cm} (kg)
\(V \) = volume \hspace{2cm} (m\(^3\))

Pressure

\[P = \frac{F}{A} \]

\(P \) = Pressure \hspace{2cm} (Pa or N m\(^{-2}\))
\(A \) = Area of the surface \hspace{2cm} (m\(^2\))
\(F \) = Force acting normally to the surface \hspace{2cm} (N or kgms\(^{-2}\))

Liquid Pressure

\[P = h \rho g \]

\(h \) = depth \hspace{2cm} (m)
\(\rho \) = density \hspace{2cm} (kg m\(^{-3}\))
\(g \) = gravitational Field Strength \hspace{2cm} (N kg\(^{-1}\))

Pressure in Liquid

\[P = P_{atm} + h \rho g \]

\(h \) = depth \hspace{2cm} (m)
\(\rho \) = density \hspace{2cm} (kg m\(^{-3}\))
\(g \) = gravitational Field Strength \hspace{2cm} (N kg\(^{-1}\))
\(P_{atm} \) = atmospheric Pressure \hspace{2cm} (Pa or N m\(^{-2}\))

Gas Pressure

\[P = P_{atm} + h \rho g \]

\(P_{gas} \) = Pressure \hspace{2cm} (Pa or N m\(^{-2}\))
\(P_{atm} \) = Atmospheric Pressure \hspace{2cm} (Pa or N m\(^{-2}\))
\(g \) = gravitational field strength \hspace{2cm} (N kg\(^{-1}\))
Pressure in a Capillary Tube

\[h_1 \rho_1 = h_2 \rho_2 \]

\[P_{\text{gas}} = P_{\text{atm}} + h \rho g \]

\[P_{\text{gas}} = P_{\text{atm}} \]

\[P_{\text{gas}} = P_{\text{atm}} - h \rho g \]

U-tube

- \(P_{\text{gas}} \): gas pressure in the capillary tube (Pa or N m\(^{-2}\))
- \(P_{\text{atm}} \): atmospheric pressure (Pa or N m\(^{-2}\))
- \(h \): length of the captured mercury (m)
- \(\rho \): density of mercury (kg m\(^{-3}\))
- \(g \): gravitational field strength (N kg\(^{-1}\))

Barometer

<table>
<thead>
<tr>
<th>Pressure in unit cmHg</th>
<th>Pressure in unit Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a = 0)</td>
<td>(P_a = 0)</td>
</tr>
<tr>
<td>(P_b = 26)</td>
<td>(P_b = 0.26 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_c = 76)</td>
<td>(P_c = 0.76 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_d = 76)</td>
<td>(P_d = 0.76 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_e = 76)</td>
<td>(P_e = 0.76 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_f = 84)</td>
<td>(P_f = 0.84 \times 13600 \times 10)</td>
</tr>
</tbody>
</table>

(Density of mercury = 13600 kg m\(^{-3}\))
Pascal’s Principle

\[
\frac{F_1}{A_1} = \frac{F_2}{A_2}
\]

- \(F_1\) = Force exerted on the small piston
- \(A_1\) = area of the small piston
- \(F_2\) = Force exerted on the big piston
- \(A_2\) = area of the big piston

Archimedes Principle

- Weight of the object, \(W = \rho_1V_1g\)
- Upthrust, \(F = \rho_2V_2g\)

\(\rho_1\) = density of wooden block
\(V_1\) = volume of the wooden block
\(\rho_2\) = density of water
\(V_2\) = volume of the displaced water
\(g\) = gravitational field strength

Density of water > Density of wood

\[
F = T + W
\]

\[
\rho Vg = T + mg
\]

Density of Iron > Density of water

\[
T + F = W
\]

\[
\rho Vg + T = mg
\]
Heat

Heat Change

\[Q = mc\theta \]

- \(m \) = mass (kg)
- \(c \) = specific heat capacity \((J \text{ kg}^{-1} \text{°C}^{-1}) \)
- \(\theta \) = temperature change (°)

<table>
<thead>
<tr>
<th>Electric Heater</th>
<th>Mixing 2 Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Supply, (E = Pt)</td>
<td>Heat Gain by Liquid 1 = Heat Loss by Liquid 2</td>
</tr>
<tr>
<td>Energy Receive, (Q = mc\theta)</td>
<td>(m_1c_1\theta_1 = m_2c_2\theta_2)</td>
</tr>
<tr>
<td>Energy Supply, (E =) Energy Receive, (Q)</td>
<td>(m_1 =) mass of liquid 1</td>
</tr>
<tr>
<td>(Pt = mc\theta)</td>
<td>(c_1 =) specific heat capacity of liquid 1</td>
</tr>
<tr>
<td>(E =) electrical Energy ((J \text{ or } Nm))</td>
<td>(\theta_1 =) temperature change of liquid 1</td>
</tr>
<tr>
<td>(P =) Power of the electric heater ((W))</td>
<td>(m_2 =) mass of liquid 2</td>
</tr>
<tr>
<td>(t =) time (in second) ((s))</td>
<td>(c_2 =) specific heat capacity of liquid 2</td>
</tr>
<tr>
<td>(Q =) Heat Change ((J \text{ or } Nm))</td>
<td>(\theta_2 =) temperature change of liquid 2</td>
</tr>
<tr>
<td>(m =) mass ((kg))</td>
<td></td>
</tr>
<tr>
<td>(c =) specific heat capacity ((J \text{ kg}^{-1} \text{°C}^{-1}))</td>
<td></td>
</tr>
<tr>
<td>(\theta =) temperature change (°)</td>
<td></td>
</tr>
</tbody>
</table>

Specific Latent Heat

\[Q = mL \]

- \(Q = \) Heat Change \((J \text{ or } Nm) \)
- \(m = \) mass \((kg) \)
- \(L = \) specific latent heat \((J \text{ kg}^{-1}) \)

Boyle’s Law

\[P_1V_1 = P_2V_2 \]

(Requirement: Temperature in constant)

Pressure Law

\[\frac{P_1}{T_1} = \frac{P_2}{T_2} \]

(Requirement: Volume is constant)
Charles’s Law

\[\frac{V_1}{T_1} = \frac{V_2}{T_2} \]

(Requirement: Pressure is constant)

Universal Gas Law

\[\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \]

\(P = \text{Pressure} \quad \text{(Pa or cmHg)} \)

\(V = \text{Volume} \quad \text{(m}^3 \text{ or cm}^3 \text{)} \)

\(T = \text{Temperature} \quad \text{(MUST be in K(Kelvin))} \)

Light

Refractive Index

Snell’s Law

Real depth/Apparent Depth

\[n = \frac{\sin i}{\sin r} \]

\(n = \text{refractive index} \quad \text{(No unit)} \)

\(i = \text{angle of incident} \quad \text{(^o)} \)

\(r = \text{angle of reflection} \quad \text{(^o)} \)

\[n = \frac{D}{d} \]

\(n = \text{refractive index} \quad \text{(No unit)} \)

\(D = \text{real depth} \quad \text{(m or cm...)} \)

\(d = \text{apparent depth} \quad \text{(m or cm...)} \)

Speed of light

\[n = \frac{c}{v} \]

\(n = \text{refractive index} \quad \text{(No unit)} \)

\(c = \text{speed of light in vacuum} \quad \text{(ms}^{-1}) \)

\(v = \text{speed of light in a medium (like water, glass ...)} \quad \text{(ms}^{-1}) \)

Total Internal Reflection

\[n = \frac{1}{\sin c} \]

\(n = \text{refractive index} \quad \text{(No unit)} \)

\(c = \text{critical angle} \quad \text{(^o)} \)
Lens

Power

\[P = \frac{1}{f} \]

\(P = \text{Power} \) \hspace{1cm} \((\text{D(Diopter)}) \)
\(f = \text{focal length} \) \hspace{1cm} \((\text{m}) \)

Linear Magnification

\[m = \frac{h_i}{h_o} \]
\[m = \frac{v}{u} \]
\[\frac{h_i}{h_o} = \frac{v}{u} \]

\(m = \text{linear magnification} \) \hspace{1cm} \((\text{No unit}) \)
\(u = \text{distance of object} \) \hspace{1cm} \((\text{m or cm}...) \)
\(v = \text{distance of image} \) \hspace{1cm} \((\text{m or cm}...) \)
\(h_i = \text{height of image} \) \hspace{1cm} \((\text{m or cm}...) \)
\(h_o = \text{height of object} \) \hspace{1cm} \((\text{m or cm}...) \)

Lens Equation

\[\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \]

Conventional symbol

<table>
<thead>
<tr>
<th>(u)</th>
<th>(v)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real object</td>
<td>Real image</td>
<td>Convex lens</td>
</tr>
<tr>
<td>Virtual object</td>
<td>Virtual image</td>
<td>Concave lens</td>
</tr>
</tbody>
</table>
Astronomical Telescope

Magnification,

$$m = \frac{P_e}{P_o} \quad m = \frac{f_o}{f_e}$$

$m =$ linear magnification
$P_e =$ Power of the eyepiece
$P_o =$ Power of the objective lens
$f_e =$ focal length of the eyepiece
$f_o =$ focal length of the objective lens

Distance between eye lens and objective lens

$$d = f_o + f_e$$

$d =$ Distance between eye lens and objective lens
$f_e =$ focal length of the eyepiece
$f_o =$ focal length of the objective lens

Compound Microscope

Magnification

$$m = m_1 \times m_2$$

$$= \frac{\text{Height of first image}, I_1 \times \text{Height of second image}, I_2}{\text{Height of object}} \times \frac{\text{Height of first image}, I_1}{\text{Height of second image}, I_2}$$

\[
= \frac{\text{Height of second image}, I_2}{\text{Height of object}, I_1}
\]

$m =$ Magnification of the microscope
$m_1 =$ Linear magnification of the object lens
$m_2 =$ Linear magnification of the eyepiece

Distance in between the two lens

$$d > f_o + f_e$$

$d =$ Distance between eye lens and objective lens
$f_e =$ focal length of the eyepiece
$f_o =$ focal length of the objective lens